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where one now writes w for the new deflection vector. Eq.
(8) can be written as

or

Sw = p — ASw

w = F(p - ASw)

(9)

(10)
where .F = &"1.

To solve this equation for w, an iteration procedure can be
used:

I0Q0+1) = F(p — AS-wW) (11)

with w^ = w in Eq. (7). When AS is small, as when calcu-
lating an approximation of a partial derivative, the converg-
ence is rapid. Note that the structural change term — ASwW
is treated as a load, which removes the necessity of recom-
puting the inverse of the altered structural stiffness matrix.

Thermoelastic Differential Equations
for Shells of Arbitrary Shape
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DONNELL'S equations for the analysis of cylindrical
shells have been extended to include the effects of arbi-

trary temperature distributions in Ref. 1. A special case
of these equations are those for flat plates which are given
in Ref. 2. Although there is no difficulty in further extend-
ing the treatment to shells of arbitrary shape, it is desirable
to record for future reference the necessary formulation of the
Vlasov-type equations for these problems, in view of the
considerable interest in thermoelastic problems of shells.

Formulation of Thermoelastic Equations for General
Shells

With the notation of Ref. 3, the five equations of equilib-
rium of a thin shell of arbitrary shape are given by
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where transverse shearing forces A^i and N% and tangential
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surface forces; qi and q% have been disregarded in Eqs. (la)
and(lb).

The forces and moments are related to the strains and
curvature changes of the middle surface by the following equa-
tions:

S =

Ed
1 — /z2

Ed

Ed
20~+~

( € 1 -

(€2

NT

NT
- fJL

(2)

Ml =
E5*

H =

12(1 - M
2

E8*
12(1 - /z2

Ed*
12(1 + M)

+

+

MT

1 - ft

MT

where

5/2
= aE

/»3
I

^7 —

3/2

5/2
zTdz (3)

where a is the coefficient of linear thermal expansion and T is
the arbitrary temperature distribution at the point of interest.

When tangential displacement components in the equations
for the changes of curvature and twist are neglected, the
curvature change-displacement relations are given by
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The substitution of Eqs. (2) and (3) into Eqs. (Id) and (le)
and the neglect of some small terms (see Ref. 3, p. 86) yields
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By introducing a stress function <i> such that the membrane
forces are given by

= _ _ . . _ i _ _ (6)

The first two equations of equilibrium (la) and (Ib) can be
satisfied approximately when the first-order derivatives of
<1> are neglected in comparison with higher order derivatives.
Now, the substitution of Eqs. (5) and (6) into Eq. (le) leads
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to the first Vlasov-type equation :

[E5*/12(l - At2)] A Aw + (1/1 -

where

= q (7)

D = - - — - — } + — (- -1da2 \Ri A2 dc

The function <i> is not arbitrary, since it must lead to dis-
placements that are compatible. The condition of com-
patibility is given by (Ref. 3, p. 28)
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Substitution of Eqs. (2, 4, and 6) into Eq. (8) then yields

EdDw + AA$ + &NT = 0 (9)

where some higher order terms have been neglected. Eqs.
(7) and (9), together with appropriate boundary conditions,4
can be used to obtain approximate solutions for thermoelastic
problems of thin shells.
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Total Heating Load on Blunt
Axisymmetric Bodies in Low-Density

Flow
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Nomenclature
= heat transfer rate at stagnation point
— poo^r

0o3/2 = approximate stagnation point rate for
free molecular flow

<Zavg = average heat transfer rate based on surface area
<?avg /TO = average rate for free molecular flow
Um = velocity of freestr earn
Poo = density of freestream
R = radius of body = radius of curvature for hemisphere
Re* = pJJ~R/M
pi = viscosity immediately downstream of normal shock
HQ = total enthalpy of freestream
Hw = enthalpy corresponding to body surface conditions
(dU/ds)o = "inviscid" velocity gradient at stagnation point

go
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THIS is a report of total heating rates of blunt, axisym-
metric noses in a low-density, hypersonic wind tunnel.

Minimum stream density was such that Knudsen number
based on nose radius and conditions immediately behind the
normal portion of the bow shock exceeded 0.1. Thus, scaling
on the basis of Knudsen number, a body of 1-ft nose radius at
a maximum altitude above 315,000 ft was simulated.

The LDH wind tunnel,1 in operation at the von Kdrman
Gas Dynamics Facility of the Arnold Engineering Develop-
ment Center, was used to obtain the data presented. Al-
though calorimetry data show thermodynamic equilibrium to
exist at the throat of the nozzle, computations2 show molecu-
lar vibration to be essentially frozen downstream of the
throat when nitrogen is the medium. A similar calculation
indicates that vibration remains frozen throughout the shock
layer, but temperatures corresponding to the active and inert
degrees of freedom are nearly equal on the stagnation stream-
line immediately downstream of the bow shock. It is as-
sumed that the portion of the total enthalpy represented by
vibration in the present case contributes to heating of the test
bodies. Inasmuch as the total temperature was below that
at which nitrogen dissociates, no recombination chemistry was
involved. When argon was used as the medium, it was as-
sumed that it behaved as a perfect gas, although excitation to
a metastable state occurred.

Talbot3 has shown that the electrical potential of a probe
in an ionized stream is an important factor in determining the
heat transfer to the probe. As a precaution, all the results
presented herein were obtained with the probe grounded with
respect to the tunnel wall.

The models consisted of hemisphere-cylinders and flat-
faced cylinders. Total heat flux (Btu/sec) to the noses was
measured. This was converted to average heat transfer rate
per unit area, gavg Btu/ft2-sec, by dividing total heat flux by
the wetted area of the nose. Descriptions of the models and
other details may be found in a test report.4

A problem arose in the comparison of the measured aver-
age values with theories presented for stagnation point heat
transfer because the theoretical distribution appropriate to
the flow conditions is not available in all cases. This left no
recourse except the assumption that one of the theories for
thin boundary layers (high Reynolds numbers) may be used
to obtain the relation between average and stagnation point
heating rates at very low Reynolds numbers. This was done
by assuming that Lees' distribution5 was valid for the case of
the hemispheres. For the case of the flat-nosed models, the
distribution computed by Vinokur6 was used. The relations
inferred from these distributions are

Nose shape
Hemisphere5

Flat face6
2.50gavg
0.756 gav£

The experimental results are presented in Fig. 1 and, in the
case of the hemisphere, compared with theories for low-density
flow.

Behavior of the data appears qualitatively in agreement
with results of the most appropriate theories. There is an
indication that the data at the lowest values of Re2 on Fig.
la depart from the extrapolated, theoretically derived curves.
First, it should be noted that the data extend to Reynolds
numbers lower than are compatible with the flow models as-
sumed for theoretical analysis. Second, the earlier remarks
on the relation of average rates to stagnation point rates may
be relevant. The hemisphere tested in argon yielded results
in good agreement with theory, as shown in Fig. Ib.

The constant-density, subsonic flow field on which the
heating rate distribution of Ref. 6 is based cannot be valid
at Reynolds numbers where a fully merged shock layer exists
for a highly cooled body. Thus, seme of the difference be-
tween theory and experiment seen in Fig. Ic would be expected
for this reason.


